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Introduction
We study the modal logic of the closure algebra P2, generated by 
the set of all polygons of the Euclidean plane R2. We show that:

• The logic is finitely axiomatizable
• It is complete with respect to the class of all finite "crown" frames 
we define
• It does not have the Craig interpolation property
• Its validity problem is PSpace-complete
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Preliminaries

p,q,… ∧ ∨ ¬  Modal 
Language

Topological 
space X P, Q,…  ∩ ∪ \ C I

p→p

CCA ⊆ CA
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As is well known, logic S4 is characterized 
by reflexive-transitive Kripke frames.



The modal logic of the class of all topological spaces is S4. 
Moreover, for any Euclidean space Rn, we have Log(Rn) = S4.

[McKinsey and Tarski in 1944]

Preliminaries

General spaces
Topological spaces together with a fixed collection of subsets 
that is closed under set-theoretic operations as well as under 

the topological closure operator.
General models

Valuations are restricted to modal subalgebras of the powerset.
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We study the topological semantics, according to which
modal formulas denote regions in a topological space.

(P(R2), C)   (A, C)



Preliminaries
Lets generate a closure algebra by polygons of R2 and denote it P2.
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The 2-dimensional polytopal modal logic PL2 is defined to be the set 
of all modal formulas which are valid on (R2,P2).



Preliminaries

R. Kontchakov, I. Pratt-Hartmann and M. Zakharyaschev, Interpreting Topological 
Logics Over Euclidean Spaces., in: Proceeding of KR, 2010

What is the 
modal logic of 
the polygonal 

plane?
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J. van Benthem, M. Gehrke and G. Bezhanishvili, Euclidean Hierarchy in Modal 
Logic, Studia Logica (2003), pp. 327-345



Preliminaries
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The logic of chequered subsets of R2



Crown frames
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Gn

Let  Λ be the logic of all “crown” frames.

Theorem: Λ coincides with PL2.



Preliminaries

The map f : X1 → X2 between topological spaces X1 = (X1, τ1) and 
X2 = (X2, τ2) is said to be an interior map, if it is both open and 

continuous.

• Let X and Y be topological spaces and let f : X  Y be an onto 
partial interior map. 

• Then for an arbitrary modal formula ϕ we have Yϕ whenever 
Xϕ. 

• It follows that Log(X) ⊆ Log(Y).
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Example
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The main results
Theorem: Any crown frame is a partial interior image of the polygonal 

plane.
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Corollary: PL2 ⊆ Λ.



The main results
Theorem: Let ϕ be satisfiable on a polygonal plane. Then ϕ is 

satisfiable on one of the crown frames.

Corollary: Λ ⊆ PL2. Thus, the logic of the polygonal plane is 
determined by the class of finite crown frames. Hence this logic 
has FMP.
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Forbidden frames
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Axiomatization
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We claim that the logic axiomatized by the Jankov-Fine axioms of 
these five frames coincides with PL2.

ξ = ¬ξ(B1) ∧ ¬ξ(B2) ∧ ¬ξ(B3) ∧ ¬ξ(B4) ∧ ¬ξ(B5)



Axiomatization

Lemma 1: Each crown frame validates the axiom ξ.
Lemma 2: Each rooted finite frame G with Gξ is a subreduction 
of some crown frame.
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Theorem: The logic PL2 is axiomatized by the formula ξ.



Shorter Axioms

(I) p→[¬p→(p→p)]
(II) [(r∧q)→γ]→[(r∧q)→(¬(r∧q) ∧ p ∧ ¬p)]

Where γ is the formula
(p∧q) ∧ (¬p∧q) ∧ (p∧¬q).
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Complexity

Theorem: The satisfiability problem of our logic is PSpace-complete.

Wolter, F. and M. Zakharyaschev, Spatial reasoning in RCC-8 with boolean region 
terms, in: Proc. ECAI, 2000, pp. 244-250
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Craig Interpolation
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(A) (r → (¬r ∧ p ∧ ¬p))
(C) (r ∧  s ∧  ¬s) → (¬r ∧  s ∧ ¬s)

A → C is valid in PL2.



Further research
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•Natural generalizations for spaces of higher dimension. PLn.
•Also d-logics and stronger languages.



Thank You
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